Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells.

نویسندگان

  • Suzan Imren
  • Emmanuel Payen
  • Karen A Westerman
  • Robert Pawliuk
  • Mary E Fabry
  • Connie J Eaves
  • Benjamin Cavilla
  • Louis D Wadsworth
  • Yves Beuzard
  • Eric E Bouhassira
  • Robert Russell
  • Irving M London
  • Ronald L Nagel
  • Philippe Leboulch
  • R Keith Humphries
چکیده

Achieving long-term pancellular expression of a transferred gene at therapeutic level in a given hematopoietic lineage remains an important goal of gene therapy. Advances have recently been made in the genetic correction of the hemoglobinopathies by means of lentiviral vectors and large locus control region (LCR) derivatives. However, panerythroid beta globin gene expression has not yet been achieved in beta thalassemic mice because of incomplete transduction of the hematopoietic stem cell compartment and position effect variegation of proviruses integrated at a single copy per genome. Here, we report the permanent, panerythroid correction of severe beta thalassemia in mice, resulting from a homozygous deletion of the beta major globin gene, by transplantation of syngeneic bone marrow transduced with an HIV-1-derived [beta globin gene/LCR] lentiviral vector also containing the Rev responsive element and the central polypurine tract/DNA flap. The viral titers produced were high enough to achieve transduction of virtually all of the hematopoietic stem cells in the graft with an average of three integrated proviral copies per genome in all transplanted mice; the transduction was sustained for >7 months in both primary and secondary transplants, at which time approximately 95% of the red blood cells in all mice contained human beta globin contributing to 32 +/- 4% of all beta-like globin chains. Hematological parameters approached complete phenotypic correction, as assessed by hemoglobin levels and reticulocyte and red blood cell counts. All circulating red blood cells became and remained normocytic and normochromic, and their density was normalized. Free alpha globin chains were completely cleared from red blood cell membranes, splenomegaly abated, and iron deposit was almost eliminated in liver sections. These findings indicate that virtually complete transduction of the hematopoietic stem cell compartment can be achieved by high-titer lentiviral vectors and that position effect variegation can be mitigated by multiple events of proviral integration to yield balanced, panerythroid expression. These results provide a solid foundation for the initiation of human clinical trials in beta thalassemia patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in lentiviral vector design for gene-modification of hematopoietic stem cells.

Lentiviral vectors are more efficient at transducing quiescent hematopoietic stem cells than murine retroviral vectors. This characteristic is due to multiple karyophilic components of the lentiviral vector pre-integration complex. Lentiviral vectors are also able to carry more complex payloads than murine retroviral vectors, making it possible to deliver expression cassettes that direct either...

متن کامل

Correction of β-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients

Beta-thalassemia is a common monogenic disorder due to mutations in the beta-globin gene and gene therapy, based on autologous transplantation of genetically corrected haematopoietic stem cells (HSCs), holds the promise to treat patients lacking a compatible bone marrow (BM) donor. We recently showed correction of murine beta-thalassemia by gene transfer in HSCs with the GLOBE lentiviral vector...

متن کامل

Gaining the hard yard: pre-clinical evaluation of lentiviral-mediated gene therapy for the treatment of β-thalassemia

Gene therapy is one potential novel therapeutic avenue for the treatment of inherited monogenic disorders. Diseases of the blood are frequent targets for gene therapy because it is relatively easy to harvest haematopoiesis stem cells (HSCs) from the bone marrow, genetically modify the cells ex vivo, and then re-administer the corrected cells back into the patient via intra-venous injection. In ...

متن کامل

High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells.

Transplantation of genetically corrected autologous hematopoietic stem cells is an attractive approach for the cure of sickle-cell disease and beta-thalassemia. Here, we infected human cord blood cells with a self-inactivating lentiviral vector encoding an anti-sickling betaA-T87Q-globin transgene and analyzed the transduced progeny produced over a 6-month period after transplantation of the in...

متن کامل

Transfusion Related Adverse Effects on Beta-Thalassemia Major and New Therapeutic Approaches: A Review Study

Thalassemia is one of the most common genetic disorders, worldwide.Beta-Thalassemia Major (BTM) is the most severe type, which reduces lifeexpectancy and quality of life. In this study, we searched the related keywords to subject from 1996-2019 in the Medline and Web of Science databases, therefore found 250 articles. Moreover, we categorized them into the studies on blood transfusions in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 22  شماره 

صفحات  -

تاریخ انتشار 2002